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X-ray Powder Diffraction
Basics, Rietveld refinement and applications
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Time Line
§ 1665: Diffraction effects observed by Francesco Maria Grimaldi 
§ 1868: X-rays Discovered by German Scientist Röntgen
§ 1912: Discovery of X-ray Diffraction by Crystals: von Laue
§ 1912: Bragg’s Discovery
§ 1928: 1st XRD studies on cement (Hansen & Brownmiller)
§ 1969: Rietveld method for neutron diffraction (Hugo Rietveld)
§ 1977: Rietveld method for XRD (Cox, Young & Thomas)
§ 1987: 1st Rietveld quantification analysis (Hill & Howard)
§ 1993: 1st Rietveld quantification analysis on cement (Taylor & Aldridge)
§ 2006: Quantification of phases with PONKCS (Scarlett & Madsen) 
§ 2014: PONCKS method on cement (Ruben Snelling)
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Outline
§ What is powder diffraction? Basics of XRD
§ Crystallographic review
§ General uses
§ Basic anatomy of the diffractometer
§ What does the diffraction pattern really show?
§ Sample preparation & data collection
§ XRD softwares and databases
§ General phase identification
§ Rietveld refinement
§ Practical examples
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Source: XDS 2018 “XRPD and Rietveld” UNAL-Colombia course

I.- Introduction: What are X-rays?
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Source: http://en.wikipedia.org/wiki/X-ray/

I.- Introduction: What are X-rays?

5

6

Source: XDS 2016 “XRPD and Rietveld” course
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X-Ray Scattering

Single Particle Single Crystal

Source: XDS 2016 “XRPD and Rietveld” course
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Source: XDS 2016 “XRPD and Rietveld” course
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Taken from: 
https://chem.libretexts.org/LibreTexts/Howard_University/General_Chemistry%3A_An_Atoms_First_Approach/Unit_5%3A_Stat
es_of_Matter/Chapter_12%3A_Solids/Chapter_12.03%3A_Stucture_of_Simple_Binary_Compounds
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gas

liquide

vitreous

crystal
In contrast to a crystalline pattern consisting of a series of sharp
peaks, amorphous materials (liquids, glasses etc.) produce a
broad background signal

Source: XDS 2016 “XRPD and Rietveld” course
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Source: XDS 2016 “XRPD and Rietveld” course
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Crystal systems

ü 7 crystal systems

ü 14 Bravis lattices

ü 230 Space groups
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Sources: XDS 2016 “XRPD and Rietveld” course
Images from Basics of X-Ray Powder Diffraction, 
Presentation by Scott Speakman, MIT CMSE
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2𝜃 = 2 ⋅ arcsin
𝜆

2 ⋅ 𝑑-./
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General uses of X-ray powder diffraction

# 1 Identification of crystalline compounds (using known database). (Based on Ihkl and dhkl)

# 2 Determination of the unit cell parameters. (Based on dhkl)

# 3 Determination of the crystal structure (atomic parameters). (Based on Ihkl and dhkl)

# 4 Quantitative phase analysis (sample purity). (Based on Ihkl)

# 5 Determination of the microstructure of the phase. (Based on the shape-‘FWHM’ of the Ihkl)
(average microparticle size and shape, microstrains, residual stress, etc.)

# 6 XRPD can be coupled to thermal variation (thermodiffractometry):
Uses for: phase transitions, chemical reactions, melting/crystallization, thermal expansion, …

# 7 XRPD can be coupled to pressure variation:
Uses for: phase transitions, equation of state determination, …
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Modifed from: Aranda & De la Torre 2012. 
Rev. Min. Geo.  

Main uses of RQPA for OPC materials

Clinkers Cements Hydration products

On-line control of production

Laboratory quality control

Modifications 
in the kiln

Addition of (industrial) 
wastes to the raw meals

Use of alternative
mineraliser/flux agents

Impact of the change
of raw materials

Hydration of OPCs

Role of 
superplasticizers

Influence of w/b
ratio, T & P 

Hydration of blended cements

Single phases
(modelling)

Binary 
(f.i. OPC + FA)

Ternary 
(f.i. OPC  +  FA  + CC
or: OPC + BFS + FA)

Special
cements

Mineralogy 
of sulfates

Alteration during
storing

Analysis of
blended cements

Durability

RQPA gives 
useful 

information for 
cements 

(The answer 
will depend on 
the problem)
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I.- Introduction: Basic anatomy of the diffractometer

Basic scheme of a powder diffractometer

X-ray tube
Sample

Optics Goniometer

Detector
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I.- Introduction: Basic anatomy of the diffractometer

OPTICS:
üSlits and masks

üSoller

üMirrors and monochromators

üFilters

üBeam attenuators
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I.- Introduction: X-ray generation

Target elements: Cr, Fe, Co, Cu, Mo, Ag
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I.- Introduction: X-ray generation (Lab Sources)

Moseley’s Law
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I.- Introduction: X-ray generation (Synchrotron)
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I.- Introduction: X-ray generation (Synchrotron)
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LSL (Paul Scherrer Institute, Villigen - Switzerland)
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I.- Introduction: X-ray generation (Synchrotron)
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Diamond Synchrotron Radiation (Oxford)

Soleil Synchrotron Radiation (France)
European Synchrotron Radiation Facility (ESRF)
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K beta filter

I.- Introduction: Beta filter
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I.- Introduction: Diffracted beam monochromator
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I.- Introduction: Primary monochromator
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I.- Introduction: Sample stages
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Source: XRD & Rietveld Course 2016. UN - Colombia

Parallel primary 
beam, 
Transmission
Debye-Scherrer

2?Reflection 1

2?Reflection 2

Detector

Sample (~106 crystals)Pa
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Measurement 
circle M

2?Refl’ 1
Sample

Reflection
Bragg-Bretano
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I.- Introduction: Measurement geometries

34

Theta-Theta Theta-2Theta
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Hybrid monochromator
(Göbel mirror+ monochromator)

X-ray tube

Soller slits

Detector

Capillary
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What does the diffraction pattern show?
Peak 
height: 
ymax

2. Peak Intensity:
Integrated intensity
I (Position of atoms & symmetry)

3. Peak width “FWHM“ (full width at 
half maximum), size & strains inside 

crystallites (microstructure)

1. Peak position
(size & symmetry of crystal)

½ymax 4. Reflexion due to Ka2

ql sin2 ××= hkld

Bragg‘s equation for λ1 and λ2 contributing to the radiation:
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Peak intensity

𝐼!,#$% = 𝑆! ⋅ 𝐿𝑝 ⋅ 𝐴 ⋅ 𝑃!,#$% ⋅ 𝐹!,#$%
&

Scale Factor

Lorentz-Polarization
factor

Absorsion factor

Texture Factor
(PO)

Structure Factor
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Peak intensity
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• Fhkl = structure factor. Sum over 
all atoms j of the unit cell

• Per atom:  Coordinates xj, yj, zj and 
isotropic displacement parameter Bj

Scattering factor· Phase factor· displacem‘ factor

No texture: 
POp = 1, all Phkl = 1
→ fig. spherical

Platy/Sheets crystallite: 
POp < 1

Needle shaped crystallite: 
POp > 1
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Source: 
https://www.fhwa.dot.gov/publications/research/infrastructu

re/pavements/pccp/04150/chapt14.cfm
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storage and aging
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1D detector

A
B
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-- gypsum without milling
-- gypsum 5s milling
-- gypsum 50s milling
-- gypsum 100s milling
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SHEETS OR PLATES CYLINDRICAL OR NEEDLE

Sin orientación preferente

Con orientación preferente

Gypsum without preferred orientation

Gypsum with preferred orientation
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Sample displacement

No Sample Displacement
0.2mm Downward Displacement
0.4mm Downward Displacement
1.0 mm Downward Displacement
1.2mm Downward Displacement
0.5mm Upward Displacement
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Microabsorption effect:

k
k

*
kjj xμρμ å=

Average absorption coefficient å=
n

j
jjv µµ

å =
n

j
jv 1vj = volume of each phase forming the mixture of n phases and

rjj densidad cristalográfica de la fase j
mass absorption coefficient of the k element in the j phase

xk percentage (expressed as per-unit)

*
kµ

53

53



01.12.21

14

ØOverestimation of the compound with small µ and  particle size
ØUnderestimation of the compound with large µ and particle size

Micro-Absorption takes place in those samples with phases with different
absorption coefficients between them and between the average absorption
coefficient of the mixture

contamination

amorphisation

54
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optimization:
� low diffraction background 
�maximum resolution of peaks

qSlits, mask
qSoller
qMirrors and monochromators
qFilter
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Data collection for an appropriate pattern

PARAMETERS TO CONSIDER (check list):

1.- Radiation source and geometry  (Start and end angle)

2.- Step size

3.- Counting time

4.- Sample preparation

57

57
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Step size
Select step width such that you have about 3-5 steps per FWHM referring 

to instrumental resolution
If FWHM=0.3º Þ step size˜  0.03º ……usually <0.02º for quality data

Source: XDS 2016 “XRPD and Rietveld” course
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Counting time
5000-20000 counts, main peak

THE KEY WORD IS: 

COMPROMISE

Source: XDS 2016 “XRPD and Rietveld” course
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Sample preparation for data collation

§ Particle statistics (Homogenity and powder fineness)
§ Preferred orientation

Cementitious
Sample

Anhydrous

Hydrated
In-situ

Ex-situ

Sample preparation is key for attaining 

reliable results

60
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ØFREE: Search-match, MAUD, MATCH …

ØCommercial: Higscore Plus (Malver-PANalytical), Diffrac.EVA suite (Bruker), MDI Jade

C
om

m
er

ci
al

Fr
ee

Identification Software

61
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Crystallographic pattern databases
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Crystallographic pattern databases
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Qualitative analysis (Identification)
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Position [°2 ] (Copper (Cu))
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 Accepted Patterns
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Qualitative analysis (Identification)

65
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Rietveld Method

66
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Calculated diffractogram
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Rietveld Method: Basic equations

Scale factor
Lorentz-polarization factor

Multiplicity
Structure factor

Peak profile function
Absorption correction

Preferred orientation correction

Background

68
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Scale factor

To eliminate Ke, it is necessary a restriction: 
The sum of W’s must be 100%

The Rietveld method has to be regarded as SEMI-QUANTITATIVE

69
69
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Profile parameters

Gaussian Lorentzian

Pseudo-Voigt

70
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Gaussian (Cagliotti equation):

Lorentzian:

NOTE: Some programs use the same FWHM for both profile
functions!

Profile parameters

71
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Rietveld plot

Difference curve should be as flat as possible
72
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Agreement indices

These values should be as low as possible, but...
...this is NOT the aim of the method!!

73
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Usual refiment parameters
n Zero Shift or Sample displacement    

n Sample displacement
n Background

n Using a polynomial, lineal or chebyshev model
n Scaling

n Phase fraction
n Unit cell  - ρV2

n Adjust of the lattice parameters
n Profile

n Modify the peak shape to model your sample
n Strain, crystal size, etc

n Preferred Orientation (PO), asymmetry, microabsorption, atom position, 
occupancies, etc…

74
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ØInternal Standard
By the addition of a well known crystalline material in a specific amount.

ØExternal Standard
By a comparison between a well known crystalline material measured 
(separately) at the same conditions of the sample.

Ø Partial Or No Known Crystal Structure (PONKCS) Method
By previous individual amorphous phase calibration as an “standard phase”. 
Different amorphous phases can be quantified separately.

Quantification of Non-diffracting materials (ACn)

75

75

Select a standard
ü Similar particle size of the test sample
ü Mass absorption coefficient (MAC) similar to the test 

sample

Amount of standard

Depends on the amorphous amount 
that it can be theoretically 
determined (Westphal et al 2009)

 4

S

SS 10
W100
R W1A ´

-
-

=Amorfo (%) 4

S

SS 10
W100
R W1A ´

-
-

=Amorfo (%)ACn, %

76

Internal standard

76

#.- Avoid complications from mixing an internal standard with the sample.
#.- Useful for reflection geometry diffractometer (Bragg-Brentano).
#.- Consists in determine the diffractometer constant, Ke (=G), with an 
appropriate standard.
#.- The mass attenuation coefficient of the sample is needed, µs. This must be 
independently determined, for example by X-ray fluorescence spectrometry.

DRAWBACK
#.- Any change on diffractometer configuration/conditions, force you check 
again the set-up.
#.- All the time, requires the recording of two patterns in identical 
diffractometer configuration/condition.

External standard

77
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Diffractometer constantPrimary Standard

External standard

Basics for external standard method
If a standard s (e.g. Rutile) was tested
Then Ke is known:

Ke =
Ss (ZMV )sµs

Ws

𝐴𝐶𝑛 = 100 −(
)*+

,

𝑊)

Rutile

Wα =
Sα (ZMV )αµm

Ke
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PONCKS Method
Ø Calibration of a phase of unknown structure:

Mix of the amorphous phase α and a standard (weight fractions known)

In unknown mixes the refined amorphous phase scale factor can then be recalculated 
into a weight fraction

Peakphase
calibrationfactor
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Practical examples

80

§ 1. Ordinary Portland cement (anhydrous)

§ 2. Hydrated cement paste
• General refinement approach
• Renormalization of results

§ 3. Hydrated blended cement pastes
• 3a: Anhydrous blended cements
• 3b: Hydrated LC3 cement paste
• 3c: Hydrated slag cement paste

§ 4. In-situ hydration studies
• 4a: Dopant effect on C3S hydration
• 4b: PSD on hydration of C3S/C3A

§ Summary

80

Case study 1: Anhydrous Portland cement

I (
u.

a.
)

2q/º

Set up regulator

81

Dehydration
processes in

cement mill(s)

81
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Case study 1: Anhydrous Portland cement

I (
u.

a.
)

2q/º

Additions

82
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§ Crystalline clinker phases
• C3S, C2S, C3A, C4AF
• Refine the scale factor
• The cell parameters and profile should be fixed 

according to previous refinement of the clinker

§ Crystalline hydrates
• CH, AFt, AFm
• Refine the scale, cell parameters and the profile
• Refine the preferred orientation for CH and Aft, if necessary

§ Amorphous content 
• C-S-H, SCMs humps to model the background
• Treat them all as amorphous content with external standard 
• OR treat them as background profile/PONKCS phases

OPC hydrated at 28 days, w/c = 0.4

Case study 2: Hydrated cement paste

83

Normalize your results

§ We should normalize the results to paste, anhydrous or clinker according to your case.
• If you are going to compare the results with TGA, normalized to anhydrous
• …

§ One should be aware of the weight percentage you are looking at
• Clinker

§ Without water, anhydrous
• Fresh hydrates

§ With water, based on paste
• Dried hydrates

§ The free water is removed, but the bind water should be taken into account

84
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Renormalize your 
results
Recalculation of XRD 
results

85

not in [%]

initial&mix fresh

XRD&data theoretical
10 water&loss=

10

theoretical measured
12,5 water&loss= water&loss=

10 11,1

XRD&data

60

30 30

60

g&
pe

r&1
00
g&
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st
e

g&
pe

r&1
00
g&
an
hy
dr
ou

s

dried&theoretical dried&measured

25

37,5 37,5 33,3

100
75 75 66,7

20

80

(1+w/c)

/(1-LOI)

/(1+w/c)

Xuerun XRD training course 2014

85
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Renormalize your results
Recalculation formulas
§ fresh specimen (disc):

• per 100g paste m=mXRD
• per 100g anhydrous m=mXRD·(1+w/c)

§ dried specimen (powder):
• per 100g paste m=mXRD*(1+ H2Obound)/(1+w/c)
• per 100g anhydrous m=mXRD*(1+ H2Obound)

§ dried specimen (powder):
• per 100g paste m=mXRD/[(1-H2Obound)/(1+w/c)]
• per 100g anhydrous m=mXRD/(1- H2Obound)

86

H2Obound on ignited
basis

H2Obound on dried basis

86

87

PC hydrates Content (g/ 100g fresh paste) DoH (%)

Ages (d) Clinker CH AFt Free water(TG) Total Am. Clinker
0 62.5 0 TG 0 28.6 0 0
1 29.2 8.4 10.7 7.7 17.4 52.7 53.3
3 23.7 10.9 12.3 10.2 15.7 53.2 62.1
28 16.3 13.5 14.3 6.8 13.3 61.3 73.9

● Portlandite (CH) and ettringite (AFt) content
● Degree of hydration (DoH) for clinker

● Hydration of the clinker phases
● Thermodynamic modeling (GEMS)
● Mass balance calculations using BSE-EDS
● Other modeling

87
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Case 3: Hydrated blended cement pastes

88

89

Case 3a: Anhydrous blended cements
• PONKCS applied to blended cements – model mixes (Snellings et al., 

2014)

89
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Case 3b: Hydrated LC3 cement paste

F. AVET et.al. CCR 2018

90
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Case 3b: Hydrated LC3 cement paste

F. AVET et.al. CCR 2018
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Case 3b: Hydrated LC3 cement paste

F. AVET et.al. CCR 2018
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Case 3c: Hydrated slag cement

X. Li et.al. in prep[Courtesy X. LI, et.al. in prep.]

93
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Case 3c: Hydrated slag cement

X. Li et.al. in prep[Courtesy X. LI, et.al. in prep.]
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Case 3c: Hydrated slag cement

X. Li et.al. in prep[Courtesy X. LI, et.al. in prep.]

95

§ Laboratory X-ray diffraction
§ Kapton© film is used to cover the fresh paste after casting

• Maintain the moisture of the sample (~1 day)
• Introduce error (Preferred orientation of CH and AFt)
• Results can be used semi-quantitatively

§ XRD patterns are recorded continuously
§ Sample temperature is controlled

• Inside XRD can be hot during measurement
• Hydration kinetics is highly temperature dependent

4. In-situ hydration

96
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● C3S doped with ZnO
● Hydration promotion at early age

[Courtesy X. LI, et.al. in prep.]
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Case 4a: Effect of dopants on C3S hydration

97
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Case 4b: Effect of PSD on C3S/C3A hydration
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Fine C3S, Coarse C3A
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Fine C3S, Fine C3A
3.75% Gyp

C3A + 3C$H2 + 26H  → C6A$3H32
Source: Zunino et al. 2020 CCR
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99Wuhan, 2 July 2019

Summary RQPA
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