Durability of cementitious materials

Meenakshi Sharma
Laboratoire de Matériaux de Construction, LMC
Meenakshi.sharma@epfl.ch

Durability
- The ability to withstand wear, pressure, or damage
- The ability to last a long time without significant deterioration

Objective
- Understanding of various deterioration processes
- Mechanism
- Identification
- Mitigation/prevention

Deterioration processes
- Physical attack
 - Abrasion
 - Erosion
 - Cavitation
 - Physical salt attack
 - Freeze-thaw
 - Fire damage
- Chemical attack
 - Corrosion
 - Alkali aggregate reaction
 - Sulphate attack
 - Acid attack
 - Biogenic attack

Physical and cracks
Chemical and cracks
Physical attack
Chemical attack
Physical attack

Erosion
- Action of flowing water or wind
- Rain and flowing water in hydraulic structures
- Abrasion due to solid particles influences erosion - usually a part
- Surface properties are important
 - Porosity of top layer
 - Surface finishing
- Precautions
 - Reduce velocity of water flow
 - Slope should be low

Abrasion
- Physical wear due to hard particles
- Abrasion resistance
 - Ability of a surface to resist being worn away by rubbing or friction
 - Paste hardness, aggregate hardness and aggregate/paste bond
- Vehicular traffic – bends and corners
- Surface properties are important
 - Porosity of top layer
 - Surface finishing
 - Low paste content
 - Hard and strong aggregates

Cavitation
- Low pressure region – water vapour
- High pressure region – vapour collapse causing extreme pressures
- Collapse of vapour bubbles impacts surface
- Elimination of location of cavitation
- Concrete
 - Low w/c ratio
 - High strength

Erosion
- Scrivener et al. (2004), Safiuddin (2015)
- Hadja and Kharchi (2017)
- Glen Canyon Dam, Colorado River, Arizona, US
Physical salt attack
- One side in contact with salt solution
- Evaporation on another side
- Rate of evaporation > rate of supply for salt solution
 - Crystallization of salts in pore – stresses
- Rate of evaporation > rate of supply for salt solution
 - Efflorescence on the surface

Lee and Kurtis (2017)

Freeze-thaw deterioration
- Concrete is susceptible to cracking and even crumbling when subjected to cyclic freezing and thawing
 - Necessary conditions:
 - Saturated or nearly-saturated concrete
 - Freezing and thawing cycles

Mechanism of freeze thaw
- Ice occupy approximately 8% higher volume
- Freezing = ice forms – higher volume – movement of water
 - No cracks – if increase in volume accommodated
 - Cracks = insufficient pore volume
- Thawing = ice melts and reduces volume – empty pore or crack
 - External water enters concrete
- Repetition of cycle
Identification of freeze thaw

- D-line cracking or disintegration
- Scaling – de-icing salts and zonal freezing
- Popouts

Factors affecting deterioration

- Degree of saturation
- Available water volume
- Pore structure
- Concrete age
- Climatic conditions
- Aggregate characteristics
- De-icing salts
- Air entrainment

Fire damage

- At high temperature concrete tends to lose strength
- Above 200°C strength loss can start to be significant
- Colour changes from grey to pink to buff
- Aggregates may start to decompose
- Higher strength concretes spall more
- Concrete generally good insulator
- Steel loses strength at high temperature
- Characterisation can be used to determine temperature reached
Chemical attack

Corrosion of reinforcement in concrete

- Reinforcement – tensile strength
- Steel – produced from iron ore
- Corrosion of steel reinforcement

- How reinforcement in concrete can be stable?
 - Passivating layer
 - Concrete cover depth

Mechanism of corrosion

- Electrochemical process – anode and cathode & electrolytic solution
 - Concrete
 - Breakdown of passive layer or presence of two different type of metals
 - Solution available in the pores of concrete

Mechanism of corrosion

- Corrosion reaction
Influence of corrosion

- Influence on steel
 - Reduction in the cross-sectional area
 - Reduction in tensile strength of reinforcement
- Influence on concrete

Stages during reinforcement corrosion

The result

Major reason of corrosion

- Carbonation
 - CO₂ in environment
 - Disruption of passivating film due to lowering of pH
- Chloride attack
 - Deicing salts, sea water, sand etc.
 - Disruption of passivating film at high pH
- Hydrogen embrittlement
- Stray currents
Carbonation

- Carbon-dioxide reacts with alkalis to carbonate them, this reduces the pH of the solution

 \[
 \text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}\]

 \[2\text{NaOH} + \text{CO}_2 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O}\]

 \[2\text{KOH} + \text{CO}_2 \rightarrow \text{K}_2\text{CO}_3 + \text{H}_2\text{O}\]

 \[(\text{CaO})_x(\text{SiO}_2)_y(\text{H}_2\text{O})_z + x\text{CO}_2 \rightarrow x\text{CaCO}_3 + y\text{SiO}_2(\text{H}_2\text{O})_z + (z-yt)\text{H}_2\text{O}\]

- Carbonation of CH increases solid volume
- Carbonation of C-S-H reduces solid volume

Testing carbonation

- Phenolphthalein test
- Phenolphthalein solution is pink at pH > 9.2 and colourless below 9.2
- pH
- Reserve alkalinity

Chloride

- Ferrous ions combine with the chloride ions to form ferrous chloride

 \[2\text{Fe}^{2+} + 4\text{Cl}^- \rightarrow 2\text{FeCl}_2\]

 Self-propagating due to acidic conditions created

 \[2\text{FeCl}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_2 + 4\text{H}^+ + 4\text{Cl}^-\]

 \[2\text{FeCl}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_2 + 2\text{Cl}^-\]
Chloride detection – bulk diffusion

From: Shiyu et al. 2019

Mini-migration test

- Upstream: 0.5 M NaCl, 0.3 M NaOH
- Downstream: 0.3 M NaOH
- Voltage is applied

From: Wilson et al. 2021

Chloride detection

Alkali aggregate reaction

- Aggregates can react under certain conditions
- Aggregates can imbibe water
- Swelling and cracking occurs
- Usually a slow process
- Less often cause of failure than other mechanisms
- Alkali silica reaction (ASR)
- Alkali silicate reaction
- Alkali carbonate reaction (ACR)
Mechanism of ASR
- Reactive silica from aggregates + alkalis from cement → gel
- Gel – imbibes water – volume increase – expansion
- Restraint – stresses due to ASR expansion
 \[4\text{SiO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{Si}_4\text{O}_9 + \text{H}_2\text{O} \]
- SiO\text{-} ions formed in the aggregates diffuse out slowly
- Na\text{+}, K\text{+}, Ca\text{+}, OH\text{-} ions from solution attracted into the aggregates
- Pressure builds in the aggregate
- Surface reaction slow in quartz
- Penetration of ions if poorly crystalline

Alkali silica reaction
- Crack depth – 25 to 50mm
- Unreinforced concrete
 - Manx cracks
 - Crack join
- Reinforced concrete
 - Manx cracks
 - Regular cracks

Prevention of ASR
- Reduction in alkalinity can reduce expansion:
 - Supplementary cementitious materials
 - Chemical effects on gel
 - Lithium salts: replacement of Na & K in gel
 - Air entrainment
- Low alkali content: less gel
- High alkali content: vigorous reaction before hardening?
- Pessimum effect of aggregates

Alkali silica reaction
- Identification
 - Presence of gel in cracks
 - Presence of potentially reactive aggregates
 - Crack pattern
 - Gel
 - Transparent or brownish
 - Carbonates and turns white on exposure to the atmosphere
 - Similar to leaching of calcium hydroxide or efflorescence
Sulphate attack
- Excess sulphates in concrete can lead to excessive expansion
- Internal attack (>5% SO\textsubscript{3} by wt)
- Over-sulphated cement
- Sulphate contamination of aggregates
- High temperature curing
- External attack
 - Ingress of sulphates from external sources like ground water, soil, industrial waste, sewage, etc.

Mechanism of sulphate attack
- Chemical reactions leading to formation of:
 - Ettringite, e.g.
 \[
 \text{Monosulphate} + \text{Sulphate} + \text{Water} \rightarrow \text{Ettringite}
 \]
 - Gypsum, e.g.
 \[
 \text{Portlandite} + \text{Sodium Sulphate} \rightarrow \text{Gypsum} + \text{Sodium Hydroxide} + \text{Water}
 \]
 \[
 \text{Portlandite} + \text{Magnesium Sulphate} \rightarrow \text{Gypsum} + \text{Magnesium Hydroxide} + \text{Water}
 \]
 - Thaumasite (CuSiO\textsubscript{3}.CaCO\textsubscript{3}.CaSO\textsubscript{4}.15H\textsubscript{2}O)
 \[
 \text{Sulphates} + \text{Calcium Silicates} + \text{Calcium Carbonate} \rightarrow \text{Thaumasite}
 \]

Protection against sulphate attack
- Improve quality of concrete
- Use of surface protection
- Sacrificial layer of concrete
- Sulphate resistant cements (e.g. Types II and V)
- Supplementary cementitious materials
- Air entrainment
- Air temperature during hydration
- Size and geometry of pour
- Cement content
- Cement fineness
Acid attack
- Acids attack CH and C-S-H
- Source of acids:
 - Acid rain
 - Industrial sources, etc.
- Etching to complete breakdown of concrete
- Rate of attack depends on H+ concentration

Prevention
- Reduce direct exposure to acid
- Surface protection
- Low permeability concrete
- Aggregate type

Biogenic attack
- Sulphate attack
 - Anaerobic conditions
 - Conversion of sulphate to H2S [Desulfovibrio]
 - Conversion of H2S to H2SO4 by aerobic bacteria on surface
 - Thiothrix thesoioids (concretivorus), produces up to 10% sulfuric acid (pH < 1)
- Acid attack
- Ammonium attack
 - NH4+ reacts with OH- producing NH3
 - Green Fungus (Fusarium) produces acids
 - pH reduction and acid attack
 - Corrosion of reinforcement

Biogenic sulfuric acid attack
- Conversion of H2S to H2SO4 by aerobic bacteria on surface
- Thiothrix thesoioids (concretivorus), produces up to 10% sulfuric acid (pH < 1)
- Acid attack
Corrosion of reinforcement by bacteria

Factors affecting biogenic attack
- Cement composition
- Permeability of concrete
- Temperature
- Sewage characteristics
- Prevention
 - Surface protection – low w/c concrete

Concrete in sea

Thank You!
Half cell potential

Reference electrode touched down at suitable intervals on concrete surface to measure potential difference of reinforcing steel.

Electrical resistivity

\[
\begin{align*}
\text{When } \rho \geq 120 \, \Omega \cdot \text{m} & \quad \text{corrosion is unlikely} \\
\text{When } 80 \leq \rho \leq 120 \, \Omega \cdot \text{m} & \quad \text{corrosion is possible} \\
\text{When } \rho \leq 80 \, \Omega \cdot \text{m} & \quad \text{corrosion is fairly certain}
\end{align*}
\]

Bungey et al. 2006