

	 CACs are a large family with a range of compositions → wide variety of applications CACs contain much larger proportion of alumina relative to silica 							
	Grade	Colour	Al ₂ O ₃	CaO	SiO ₂	Fe ₂ O ₃ +FeO		
	'Standard' low alumina	Grey or buff to black	36 - 42	36 - 42	3 - 8	12 - 20		
	Low alumina, low iron	Light buff or grey to white	48 - 60	36 - 42	3 - 8	1 - 3		
	Medium alumina	White	65 - 75	25 - 35	< 0.5	< 0.5		
_	High alumina (Refractory grade)	White	≥ 80	< 20	< 0.2	< 0.2		

EPFL Calcium sulfoaluminate cement (CSA) Main anhydrous phase of CSA is Ye'elimite (C₄A₃\$, Ca₄(Al₀O₁₂)(SO₄)) → 30-70% Is a Ye'elimite rich-cement Was patented in 1960 by Klein → the aim was to achieve shrinkage compensation Same raw materials as PC: Limestone, clay, bauxite and calcium sulfate CSA has lower CaO and SiO₂ but far higher Al₂O₃ and SO₃ compared to PC

	OPC	CSA	BYF	
Main Components	C3S 50-70% C2S 10-20% C4A3\$ - C3A 5-10% C4AF 5-15%	C₃S 0-5% C₂S 0-55% C₃A₃\$ 45-75% Aluminates 0-20% C₄AF 0-40%	C₃S 0-5% C₂S 45-75% C₄A₃\$ 20-45% Aluminates 0-5% C₄AF 2-40%	
Raw Materials	Limestone High Alumina Clay	Limestone Al-rich (Kaolin and Bauxite) Gypsum/Anhydrite	Limestone Al-rich (Kaolin and Bauxite) Gypsum/Anhydrite	
Burning Temperature (°C)	1450	~1250	~1250	
CO ₂ from Calcination (kgco ₂ /ton clinker)	~522	~335	~345	

	Hydration of Ye'elimite (C_4A_3 \$)				
	Ye'elimite with water	$\begin{array}{c} C_4A_3\$ \mbox{+} 18H \rightarrow C_4A\$H_{12} \mbox{+} 2AH_3 \\ Ms & \begin{array}{c} Aluminum \\ hydroxide \end{array}$			
	Ye'elimite with C\$H ₂	$\begin{array}{ll} 3C_4A_3\$ + 98H \rightarrow C_6A\$_3H_{32} + 2CAH_{10} + 2AH_3 \\ & \\ & \\ Ettringite & \\ & \\ CAH_{10} \end{array}$			
	Molar ratio < 1:2	$\begin{array}{c} 2C_4A_3\$ + 2C\$H_2 + 52H \rightarrow C_6A\$_3H_{32} + C_4A\$H_{12} + 4AH_3 \\ \\ Ettringite \\ \\ Ms \end{array}$			
	Molar ratio ≥ 1:2	$\begin{array}{l} C_4 A_3 \$ + 2 C \$ H_2 + 34 H \rightarrow C_6 A \$_3 H_{32} + 2 A H_3 \\ \\ Ettringite \end{array}$			

EPFL Reactive Belite rich Portland Cement (RBPC)

RBPC Vs PC

· Lower water demand

Similar setting time to PC

· Lower early age strength but higher later age strength

- Better resistance to sulfates and chloride (less CH)

Applications

The maximum concrete temperatures reached with RBPC can be much lower than with PC \rightarrow avoid thermal cracking especially in large concrete pours (in mass concrete applications, such as dams)

Image: Second State S

