Introduction

Concrete is made of cement, water, rock, and sand.

Worldwide most used cement is Portland cement.

- **Decomposition of limestone** (60% of the total CO₂ generated in the process)
- **Combustion of fuel** to reach 1450°C (40% of the total CO₂ generated in the process)

Production step is the most emissive step.

Solutions to reduce the CO₂ footprint of cement

- **Replacing a proportion of the fossil fuel by alternative fuels**
 - Biomass
 - Waste tires
 - Waste oil, Plastics

- **Partial substitution of raw materials**
 - Partial replacement of cement raw materials: municipal waste incinerator ash
 - Mineralizers: fluorine and SO₃

- **Developing green binders**
 - Low CO₂ binders

- **Partial substitution of cement by supplementary cementitious materials (SCMs)**

- **Use of alternative cements**
 - Inorganic materials

Alternative cement: concept and requirements

- An alternative cement is an inorganic cement that can be used as a complete replacement of Portland cement or blended hydraulic cements.

To be considered as a good opportunity, it needs to respect a set of requirements:

- Raw materials must be globally abundant, locally available in order to have a small transportation distances + obtainable at low cost
- Stable quality of raw materials and composition for a stable production
- Technical feasibility at industrial scale
- Lower CaO demand in the final products
- Possibility of recycling of its own waste and by-products
Motivation to develop alternative cements

- Lower environmental impact
- The need for specific properties (unattainable with Portland cement)
- Rapid strength development
- Specific durability requirements: improve ASR performance, better resistance to sulfate and chloride
- Reduced cost (both initial and life cycle cost)

A wide range of alternative cements

- Calcium Aluminate Cement (CAC)
- Calcium Sulfoaluminate Cement (CSA)
- Reactive Belite-rich Portland Cement (RBPC)
- Carbonatable Calcium Silicate Cement (CCSC)
- Magnesium Oxides derived from Magnesium silicates (MOMS)
- Binders based on reactive calcium silicates produced by hydrothermal processing
- Binders based primarily on precipitated calcium carbonates
- Geopolymer or Alkali-activated binders
- etc...

Calcium aluminate cement (CAC)

Hydraulic cement also known as "high-alumina cement, HAC" and "ciment fondu"

Was first developed as a replacement to the poor resistance of Portland cement to sulfate environments

This cement is a fast setting cement but it is not stable

Was widely used to repair runways during World War II

Ref: Lea’s Chemistry of Cement and Concrete - 5th edition, 2019

Calcium aluminate reactive phases

Amorphous: one amorphous phase

Limestone + Bauxite θ 1450-1600°C

Sintered or fused

CAC

the only suitable mineral on a scale for cement production
Manufacturing process of CACs

- The alumina content is the main factor that determines the manufacturing method.
- **Reverberatory furnace (Fusion)**: Most common method.
- **Rotary kiln**: Production of standard grades (>40% Al₂O₃).

Composition range for CAC

<table>
<thead>
<tr>
<th>Grade</th>
<th>Colour</th>
<th>Al₂O₃</th>
<th>CaO</th>
<th>SiO₂</th>
<th>Fe₂O₃ + FeO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard/low alumina</td>
<td>Grey or buff to black</td>
<td>36 - 42</td>
<td>36 - 42</td>
<td>3 - 8</td>
<td>12 - 20</td>
</tr>
<tr>
<td>Low alumina, low iron</td>
<td>Light buff or grey to white</td>
<td>48 - 60</td>
<td>36 - 42</td>
<td>3 - 8</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Medium alumina</td>
<td>White</td>
<td>65 - 75</td>
<td>25 - 35</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>High alumina</td>
<td>White</td>
<td>≥ 80</td>
<td>< 20</td>
<td>< 0.2</td>
<td>< 0.2</td>
</tr>
</tbody>
</table>

Mineralogy of CAC

- **5 intermediate calcium aluminate phases:**
 - Tricalcium aluminate (Ca₃Al₂O₆, C₃A): produces flash set if C₂S is not added.
 - Dodecalcium hepta-aluminate (Ca₁₂Al₁₄O₃₃ or C₁₂A₇): always present in CAC.
 - Monocalcium aluminate (CaAl₂O₄ or CA₂): Main component >40%.
 - Monocalcium dialuminate (CaAl₄O₇ or CA₂): found in higher-alumina grade.
 - Monocalcium hexa-aluminate (CaAl₁₂O₁₉ or CA₆): rarely present.

Microstructure of CAC

- **Crystalline CAC**: Polyphase: several phases.
- **Amorphous CAC**: One phase chemically homogeneous that includes all the components of CAC.

Ref: Lea’s Chemistry of Cement and Concrete, fifth edition, 2019.
Hydration of CAC with water alone

- The hydration of CAC depends on temperature and age

\[\text{CA} + 10\text{H} \rightarrow \text{CAH}_{10} \]
\[3\text{CA} + 11\text{H} \rightarrow \text{C}_{2}\text{AH}_8 + \text{AH}_3 + 3\text{H}_2 \]

Metastable hydrates (hexagonal aluminate hydrate)

Stable hydrates (cubic hydrates)

- Conversion process impacts properties (strength and durability): led to some damage in the past

How can this conversion process be avoided/reduced? → change the phase assemblage

SCMs addition to reduce conversion of CAC

- Silica fume and GGBS favour the formation of strätlingite (C$_2$ASH$_8$) instead of C$_3$AH$_6$

CAC with GGBS:

- Conversion process impacts properties (strength and durability): led to some damage in the past

CaSO$_4$ (C$_3$S) to reduce conversion of CAC

- C$_3$S addition: new hydrates appear and metastable hydrates formation is reduced

\[3\text{CA} + 3\text{C}_3\text{S}_4 + (38-3x)\text{H} \rightarrow \text{C}_3\text{A} \cdot 3\text{C}_3\text{S} \cdot \text{H}_{32} + 2\text{AH}_3 \]

- After C$_3$ depletion monosulfoaluminate is formed

\[6\text{CA} + \text{C}_3\text{A} \cdot 3\text{C}_3\text{S} \cdot \text{H}_{32} + 16\text{H} \rightarrow 3\text{C}_3\text{A} \cdot \text{C}_3\text{S} \cdot \text{H}_{13} + 4\text{AH}_3 \]

CaSO$_4$ to reduce conversion of CAC

- CaSO$_4$ filled the voids

- Total porosity

- Strengths were improved
Blends of CAC with PC and C$

- Hydration is different from pure CAC systems.
- CAC, C$, and PC proportions can be varied depending on the desired properties.

Zone 1: binary system of CAC and PC: quick or flash setting → small repair works

Zone 2: addition of C$ to avoid flash setting

Zone 2→3: reduction of PC: Ettringite is a major hydrate

Rapid strength development
Rapid drying
Shrinkage compensation

Zone 1, 2 and 3 are the most important composition zones from an application standpoint.

Main hydration product

Ettringite

$3CaO.Al_2O_3.3CaSO_4.32H_2O$

Low density 1.8g/cm³

High water content

Good space filling

Crystallographic hexagonal cell

Other hydrates also forms...

<table>
<thead>
<tr>
<th>Binder phase</th>
<th>Ions</th>
<th>Hydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/Al(OH)$_4$</td>
<td>Ca$^{2+}$</td>
<td>C$_3$A$_3$H (AFt)</td>
</tr>
<tr>
<td>CA/Al(OH)$_4$</td>
<td>Ca$^{2+}$</td>
<td>C$_3$A.C$.H$ (AFm)</td>
</tr>
<tr>
<td>CA/Al(OH)$_4$</td>
<td>SO$_4^{2-}$</td>
<td>C-S-H</td>
</tr>
</tbody>
</table>

Morphology of ettringite

Low density 1.8g/cm³

High water content

Good space filling

Ref: Lea's cement chemistry book, 2019

Schematic evolution of hydrates

Compressive strength

- Limestone
 - Early age: Limestone acts as fillers → has a physical effect and strongly affect the kinetics
 - Late age: Limestone reaction depends on the amount of calcium sulfate in the system
 - IF C$ reacts completely → the remaining CA will react with calcite → Hc and Mc formation
 - IF C$ remaining → Limestone acts as fillers

- Slag
 - Early age: Slag acts as fillers during the first 4 days
 - Late age: Sulfate depletion → pH increases → the slag release silica → C$_2$ASH$_8$ (Strätlingite) formation
 - With an excess of C$ → pH stays below 11.5 and thus the slag dissolution is slowed down

Ref: J. Bizzozero, EPFL thesis (2014)
Examples of applications of CAC

- Repair of precast element
- Fixing mortar on road surface
- Self-leveling underlay
- Repairs of airport runways and ramps

A wide range of alternative cements

- Calcium Aluminate Cement (CAC)
- Calcium Sulfoaluminate Cement (CSA)
- Reactive Belite-rich Portland Cement (RBPC)
- Carbonatable Calcium Silicate Cement (CCSC)
- Magnesium Oxides derived from Magnesium silicates (MOMS)
- Binders based on reactive calcium silicates produced by hydrothermal processing
- Binders based primarily on precipitated calcium carbonates
- Geopolymer or Alkali-activated binders
- etc...

Calcium sulfoaluminate cement (CSA)

- Main anhydrous phase of CSA is Ye’elimite: \(\text{Ca}_4\text{Al}_6\text{O}_{12}(\text{SO}_4) \rightarrow 30-70\% \
- Is a Ye’elimite rich-cement
- Was patented in 1960 by Klein, the aim was to achieve shrinkage compensation
- Same raw materials as PC: Limestone, clay, bauxite and calcium sulfate
- CSA has lower CaO and SiO\(_2\) but far higher Al\(_2\)O\(_3\) and SO\(_3\) compared to PC

Ye’elimite rich-cements type

- Ye’elimite rich-cements can be classified in two groups:
 - High belite cement, known as BYF: with/without Boron
 - Main mineralogical phases are: belite \(\text{C}_2\text{S} \), \(\text{C}_4\text{A}_\text{S} \) and ferrite \(\text{C}_4\text{AF} \)
 - Low belite cement, known as CSA
This cement can be also easier ground in the manufacturing process of CSA. Alternative cements, such as Ye’elimite-rich cements, have great advantages in terms of capital investment costs. Raw materials include Al-rich (Kaolin, Bauxite) with less limestone requirement. Lower clinkering temperature (~1250°C ± 50°C) results in a significant reduction in CO₂ emissions from calcination.

Manufacturing process of CSA

1. Raw materials:
 - Al-Rich (Kaolin, Bauxite)
 - Less limestone requirement
2. Clinker + gypsum or anhydrite
 - This cement can be also easier ground
3. Lower clinkering temperature = 1250°C ± 50°C

Raw Materials

- Limestone
- Al-rich (Kaolin, Bauxite)
- Gypsum/Anhydrite

<table>
<thead>
<tr>
<th>Main Components</th>
<th>OPC</th>
<th>CSA</th>
<th>BYF</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃S</td>
<td>50-70%</td>
<td>0-5%</td>
<td>0-5%</td>
</tr>
<tr>
<td>C₂S</td>
<td>10-20%</td>
<td>0-55%</td>
<td>45-75%</td>
</tr>
<tr>
<td>C₆A₆</td>
<td>45-75%</td>
<td>0-5%</td>
<td>20-45%</td>
</tr>
<tr>
<td>Aluminates</td>
<td>0-5%</td>
<td>0-5%</td>
<td>2-40%</td>
</tr>
<tr>
<td>Raw Materials</td>
<td>Limestone</td>
<td>High Alumina Clay</td>
<td>Limestone</td>
</tr>
<tr>
<td>Limestone</td>
<td>Limestone</td>
<td>Anhydrite or Gypsum</td>
<td>Anhydrite</td>
</tr>
<tr>
<td>Burning Temperature (°C)</td>
<td>1450</td>
<td>~1250</td>
<td>~1250</td>
</tr>
<tr>
<td>CO₂ from Calcination (kg CO₂/ton clinker)</td>
<td>335</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

Main anhydrous phases in CSA

Ye’elimite:
- Pure aluminosilicate that contains calcium instead of sodium
- Two stable modifications: cubic symmetry at temperature above 800°C and undergoes phase transition to an orthorhombic symmetry at room temperature

Calcium aluminates (several intermediate phases):
- Tricalcium aluminate (C₃A)
- Krotite (CA)
- Grossite (CA₂)
- Mayenite (C₁₂A₇)

Calcium sulfate or Anhydrite: present as a minor phase in CSA

Hydration of Ye’elimite (C₄A₃$)$

- Ye’elimite with water
 \[C₄A₃$ + 18H \rightarrow C₆A₆H₁₂ + 2AH₃ \]
 - Molar ratio ≥ 1:2
- Ye’elimite with CSH₂
 \[2C₄A₃$ + 2CSH₂ + 52H \rightarrow C₆A₆H₁₂ + 2CAH₃ + 4AH₃ \]
 - Molar ratio < 1:2
Hydration of Ye’elimite (Ca$_4$Al$_3$)δ

Stage I: Initial dissolution and formation of amorphous AH$_3$ and Ettringite

Stage II: ± nucleation + growth of mainly ettringite

Stage III: Onset Ms + AH$_3$ formation

Stage IV: Anhydrous depletion continuous growth of hydrates

Stage V: Transformation Recrystallization and continuous growth

Effect of calcium sulfate addition

Gypsum

Shorter dormant period (with gypsum)

It accelerates the hydration of Ye’elimite

Ye’elimite: Gypsum > 1:2 : ett / AH$_3$ form

Ye’elimite: Gypsum < 1:2 : Ms after Gypsum depletion

Different peak shape to gypsum

Shortened dormant period

Anhydrite

Shorter dormant period (with anhydrite)

Belite > 60% → Ettringite is no longer stable

Belite > 75% → Portlandite formation occurs

Belite > 80% → Strätlingite is no longer stable

Phase assemblage from thermodynamic modelling

Ye’elimite (the main reacting phase) and gypsum dissolve rapidly

Ettringite, Ms and AH$_3$ are stable hydrate phases

Silicate containing phase belite and fluorellestadite dissolve much slower, leading to the formation of strätlingite (at later age)

Hydration reaction of BYF: Ca$_4$Al$_3$S-C$_2$S-CS-H$_2$O

Belite

- Strätlingite formation
- Consumed AH$_3$
- Stabilized C-S-H and monosulfate

Belite > 60%

- Ettringite is no longer stable
- Portlandite formation occurs

Belite > 80%

- Strätlingite is no longer stable

Ref: M. B. Haha, et al., Advances in understanding ye’elimite-rich cements, (2019)
Properties of CSA cements

- Control the properties by adjusting the composition

<table>
<thead>
<tr>
<th>Compressive strength development (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 d</td>
</tr>
<tr>
<td>3 d</td>
</tr>
<tr>
<td>7 d</td>
</tr>
<tr>
<td>28 d</td>
</tr>
<tr>
<td>90 d</td>
</tr>
<tr>
<td>120 d</td>
</tr>
</tbody>
</table>

Applications

- CSA
 - Shrinkage compensation
 - Road reparation
 - Special work: sulfate resistance

BYF
- Rapid setting
- Concrete construction

A wide range of alternative cements

- Calcium Aluminate Cement (CAC)
- Calcium Sulfoaluminate Cement (CSA)
- Reactive Belite-rich Portland Cement (RBPC)
- Carbonatable Calcium Silicate Cement (CCSC)
- Magnesium Oxides derived from Magnesium silicates (MOMS)
- Binders based on reactive calcium silicates produced by hydrothermal processing
- Binders based primarily on precipitated calcium carbonates
- Geopolymer or Alkali-activated binders
- etc...

Reactive Belite rich Portland Cement (RBPC)

- Also known as high belite cement (HBC), is an hydraulic cement that belongs to the same family as PC
- Main anhydrous phases: C_2S, C_3S, C_4AF, C_3A (C_2S is the most abundant one)
- The difference to PC is the belite / alite ratio ($C_2S > 40\%$ and $C_3S < 35\%$)
- Can be manufactured in conventional cement plants with lower burning temperature (~ 1350 °C)
- To make belite sufficiently reactive: SO_3 or rapid clinker cooling might be needed
EPFL

Reactive Belite rich Portland Cement (RBPC)

RBPC Vs PC

- Lower water demand
- Similar setting time to PC
- Lower early age strength but higher later age strength
- Lower drying shrinkage
- Better resistance to sulfates and chloride (less CH)

Applications

The maximum concrete temperatures reached with RBPC can be much lower than with PC to avoid thermal cracking especially in large concrete pours (in mass concrete applications, such as dams).

EPFL

A wide range of alternative cements

- Calcium Aluminate Cement (CAC)
- Calcium Sulfoaluminate Cement (CSA)
- Reactive Belite-rich Portland Cement (RBPC)
- Carbonatable Calcium Silicate Cement (CCSC)
- Magnesium Oxides derived from Magnesium silicates (MOMS)

- Binders based on reactive calcium silicates produced by hydrothermal processing
- Binders based primarily on precipitated calcium carbonates
- Geopolymer or Alkali-activated binders
- etc.

EPFL

Carbonatable calcium silicate cements (CCSC)

- Low lime calcium silicates, such as Wallastonite (CaSiO$_3$, Cs) can harden by carbonation

\[
\text{CaSiO}_3(s) + \text{CO}_2(g) \rightarrow \text{CaCO}_3(s) + \text{SiO}_2(s)
\]

Major advantages of CCSC technology:

- Low CO$_2$ due to low calcium content → 30% less CO$_2$ emission than in PC production
- Absorption of additional CO$_2$ during curing (consuming 300kg of CO$_2$ per ton during curing)
- Ability to reach final high strength in 24h (28 days strength of PC)

Limitations:

- Mainly suited to the fabrication of precast articles but not too large cross section to allow thorough curing
- Because of its low pH <9, the steel is not protected by concrete against corrosion

EPFL

A wide range of alternative cements

- Calcium Aluminate Cement (CAC)
- Calcium Sulfoaluminate Cement (CSA)
- Reactive Belite-rich Portland Cement (RBPC)
- Carbonatable Calcium Silicate Cement (CCSC)
- Magnesium Oxides derived from Magnesium silicates (MOMS)

- Binders based on reactive calcium silicates produced by hydrothermal processing
- Binders based primarily on precipitated calcium carbonates
- Geopolymer or Alkali-activated binders
- etc.
Magnesium Oxides derived from Magnesium silicates (MOMS)

- New type of MgO-based hydraulic cement, called magnesium hydroxy-carbonate cement
- Mixture of MgO + hydrated magnesium (hydroxy-)carbonates

Properties:
- Good water resistance
- Relatively high level of CO₂ capture in the hydration product

Applications:
- Not yet been seriously explored

Raw materials:
- Magnesium silicate rocks
 - Olivines
 - Peridotite
 - Serpentine

Manufacturing process: different from PC
- MgO can be hardened by direct carbonation at modest CO₂ pressures
- Demonstrated on a small scale

Thank you for your attention
Questions?