

www.LC3.ch

Update of the work of CIDEM (09.2016-05.2017)

Dr. F. Martirena

23.05.2017

Core extraction site at coast (12.02.2017)

Taking sample at Artemisa (04.2017)

Training course Diploma Students (32)

A theoretical and practical course on testing building Materials, with emphasis on cement & concrete

Aggregate optimization

Fine and coarse aggregates were sieved and prepared to comply with Cuban standard NC 251

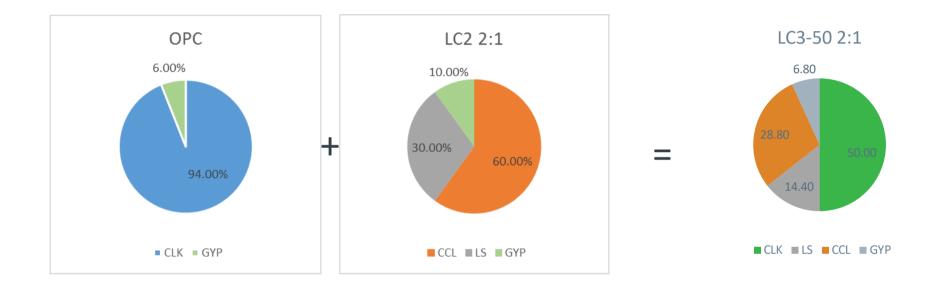
Preparation of Artemisa material for calcination

PROCESS

- Dry the material at 105 oC
- Grind the material until retained 90 μm < 10%
- Calcine at 800 oC all fractions
- Mix accordingly all fractions

Testing reactivity of Artemisa clay

- » Calcination at 750, 800, 850 oC
- » Compressive strength standard mortars PPC30 and LC3-50
- » I calo and chemical shrinkage for all temperatures
- » R3 for for all temperatures


The best choice in terms of reactivity was 800 oC. In terms of wáter demand 850 oC was slightly better

Producing LC2/LC3 with calcined clay Artemisa

		CLK	CCL	LS	GYP	Total	SO3
Cemento Portland	50.00%	47.00%	0.00%	0.00%	3.00%	50.00%	1.625%
LC2	50.00%	0.00%	30.00%	15.00%	5.00%	50.00%	1.600%
		47.00%	30.00%	15.00%	8.00%	100.00%	3.225%

Formulation of different LC3 cements (Artemisa)

- » LC3-50 2:1
- » LC3-50 1:1
- » LC3-65 2:1
- » LC3-65 1:1

- » Minicone (rheology)
- » Blaine
- » Setting time Vicat
- » I calo
- » Compressive strength standard mortars 1d, 3d, 7d, 28d
- » Comparison with previous formulations (Yigre)

Production of concrete with OPC/LC3-50

stra	Cemento			Gravilla Purio	Arena Purio	Agua efectiva	Asenta m.	Resistencia a Compresión				Porosidad %
Muestra		Aditi (APL 910		Kg kg	Ltros	cm	(MPa)				osi	
	Kg	Ad SIKA 9:		6''	סיי			48h	3d	7d	28d	Por
H-35	430	0.65%	0.43	877	875	185	20					
H-30	405	0.65%	0.45	877	894	182	20					
H-25	370	0.65%	0.5	877	916	185	20					
H-20	340	0.65%	0.55	877	937	187	20					

Production of concrete with OPC/LC3-50

Tests carried out in concrete

- » Ocluded air
- » Penetrometer
- » Slump
- » Compressive strength 24h, 7d, 28d
- » Porosity

Use of LC2 as mineral addition to concrete

- » LC2 produced with calcined clay from Artemisa and Yigre
- » Typical 35 Mpa mix design used (420 kg cement/m3)
- » Concrete with minimun cement (350 kg/m3) + 70 kg LC3/m3
- » Concrete with minimun cement (350 kg/m3) + 140 kg LC3/m3

Test carried out in concrete

- » Ocluded air
- » Penetrometer
- » Slump
- » Compressive strength 24h, 7d, 28d
- » Porosity

Use of LC2 as mineral addition to mortar

- » LC2 produced with calcined clay from Artemisa and Yigre
- » Typical mortar design sand=5, lime=1 and cement=1 (volumen)
- » Series : sand=5, lime=1 and cement=0.5, LC2=0.5 (volumen)
- » Series 2: sand=5, lime=0 and cement=0.5, LC2=1.5 (volumen)

Test carried out in mortars

- » Consistency
- » Compressive strength 3d, 7d and 28d
- » Porosity
- » Bond

Calcining clay at brick kilns

- » Clay from Manicaragua used (well known composition)
- » Bricks were molded on the workshop and taken raw to CIDEM's lab
- » Temperature at the kiln was monitored with thermocouples
- » Raw bricks were fired at 700, 800 and 900 oC at a lab oven
- » Real bricks were taken as reference
- » Bricks were crushed down to poder
- » R3 protocol (Icalo, strength)
- » Production of LC2
- » Cement LC3-50
- » Concrete as LC2

I bring some samples of poder for replica at EPFL

Chloride ingress and migration

- » Series M381, M25 and M32 laid at coast (< 500 m)
- » Series M2, M8, M11 and P laid at coast (< 500 m)
- » Same series exposed at second exposure site (500m < d < 2 km)

Test carried out in concrete

- » STADIUM
- » Porosity

Carbonation

- » Series M381, M25 and M32 laid at coast (< 500 m)
- » Series M2, M8, M11 and P laid at coast (< 500 m)
- » Same series exposed at second exposure site (500m < d < 2 km)
- » Series at CIDC (SGR) with 3 different curing time

Tests carried out

- » Carbonation depth
- » Porosity of both layers
- » Sorptivity of both layers

Air permeability

- » Series M381, M25 and M32 laid at coast (< 500 m)
- » Series M2, M8, M11 and P laid at coast (< 500 m)
- » Same series exposed at second exposure site (500m < d < 2 km)
- » Series at CIDC (SGR) with 3 different curing time

Tests carried out

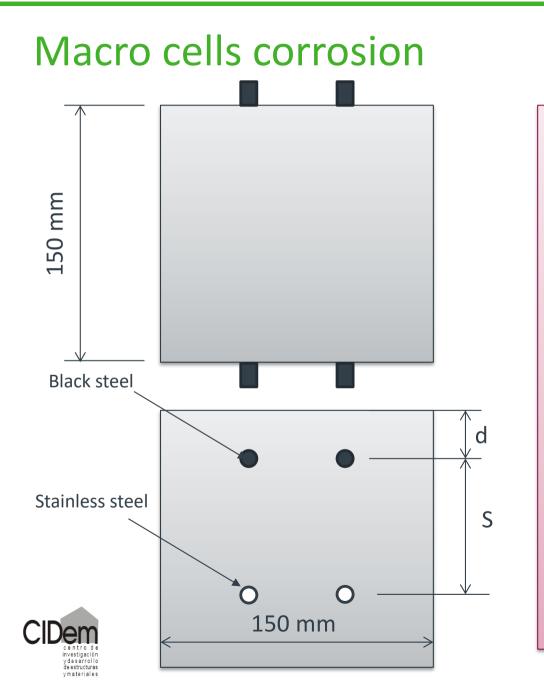
- » Air permeability
- » Resistivity

Database for concrete standards

» Concrete series H1, H2, H3 and H4, both with OPC and LC3, designed according to prescritions for each exposure class

Tests to be carried out:

- » Air permeability
- » Resistivity
- » Carbonation
- » Chloride profiles (AgNi)
- » Cl profiles (µXRF)
- » Porosity
- » Sorptivity
- » ASTM 1202

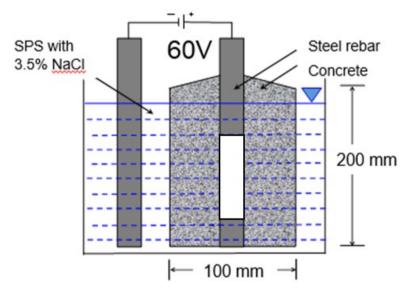


stra	Cemento	Aditivo SIKAPLAST 9100	A/C	Gravilla Purio	Arena Purio	Agua efectiva	Asentam
Muestra	Kg			Kg	kg	Ltros	cm
H-35	430	0.65%	0.43	877	875	185	20
H-30	405	0.65%	0.45	877	894	182	20
H-25	370	0.65%	0.5	877	916	185	20
H-20	340	0.65%	0.55	877	937	187	20

Conditions:

- d= 15, 30 mm
- S= 7 cm
- 2 replica for every d
- Concrete H1 with P35 and LC3-50
- Concrete block fully carbonated (4% CO₂ until full carbonation). Reference under natural carbonation
- Blocks placed on shelf indoor (RH around 70%)
- Measurement of steel potential and linear polarization resistance (2 measurements per day minimum)
- Measuring time: minimum 2 months

Macro cells corrosion



Impressed current measurement

Conditions:

- To have a preliminary assessment of corrosion induced crack resistance in cementitious systems
- Use of 3 kinds of cements (LC3-50, PP35, P35)
- Mix proportioning for concrete H1 (430 kg/m3 cement)
- 160 mm black Steel
- Applied voltage 60 V

Thank you