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This study investigates the effect of a new type of blended pozzolan on the hydration, mechanical and durability
performance of cement. A blend of limestone calcined clay pozzolan (LCCP) was produced by grinding calcined clay
and limestone in a ratio of 2 : 1 with 2% gypsum. Blends with cement replacement level of 0, 10, 15, 20, 30 and 50%
using LCCP were cast. The effect of LCCP on the hydration of cement was investigated using isothermal calorimetry
and X-ray diffraction. Mortar and concrete samples were cast to study the influence of LCCP on mechanical and
transport properties. The addition of LCCP was found to have a beneficial effect on the early age hydration of
cement. The induction period and initial setting time of cement paste were found to reduce on increased cement
replacement level. Higher or similar compressive strength was observed for all the LCCP blends as compared to
ordinary Portland cement. The pozzolanic reaction of calcined clay and formation of carboaluminates on the reaction
of calcium carbonate with alumina helps to develop a refined pore structure that aids in reducing transport properties
of concrete such as porosity, rate of water absorption and permeability.

Introduction
The cement industry is one of the major emitters of anthropo-
genic carbon dioxide into the atmosphere, accounting for
approximately 5–8% of the total carbon dioxide emissions
(Rehan and Nehdi, 2012; Scrivener, 2014). Rapid and continu-
ous development in the construction and infrastructure sector
in the near future will further drive up the collective cement
demand. The increased demand will distress the already deplet-
ing natural resources required for cement production and
environment. Supplementary cementitious materials (SCMs)
offer the most promising means to meet the demand by
optimising resource utilisation, along with economic and
environmental benefits.

SCMs are materials with a pozzolanic or cementitious property
that can be used to substitute partially for cement. The utility
of an SCM as a clinker replacement depends upon its avail-
ability, variability and the properties of the material itself. The
SCMs can be classified as natural or man-made based on their
origin (Snellings et al., 2012). The products formed on the poz-
zolanic reaction of SCMs help in the densification and refine-
ment of pore structure, which subsequently helps to enhance
the mechanical and durability performance of concrete (Duan
et al., 2013; Ghrici et al., 2007; Snellings and Scrivener, 2015).
The effect of SCMs on the strength of the concrete depends
upon numerous parameters of the SCMs, such as type,

replacement level, curing and physical and chemical properties
(El-Diadamony and Amer, 2016; Lothenbach et al., 2011).
Major technical barriers in the use of cements containing
SCMs are usually related to physical or chemical incompatibil-
ities between the SCMs and the cement. Low reactivity, low
early strength, high water demand, variability, volume stability,
longer curing period and so on are some of the most common
incompatibility issues associated with SCMs. Incorporating
SCMs for a certain specific durability performance may lead
to the attenuated performance of other durability parameters
(Mehta and Monteiro, 2006; Saraya, 2014; Siddique, 2008;
Zhang et al., 2014). Moreover, irrespective of the type of SCM
used as cement replacement, an increase in compressive
strength is observed only until a particular level of replace-
ment. Thereafter, the dilution effect becomes more prominent,
resulting in a lower compressive strength (Cyr et al., 2006; Liu,
2010). Also, the majority of the good-quality traditional SCMs
that are produced or available are already being optimally used
in the cement industry, providing limited scope to further
reduce energy consumption and emissions. Therefore, the
development of new materials such as coupled SCM blends
from sources that are widely available could provide a viable
alternative for the cement industry. Using a combination of
SCMs can help to compensate for the inadequacies of individ-
ual SCMs. The use of a combination of fly ash/silica fume,
slag/fly ash, slag/silica fume, limestone/slag, limestone/fly ash
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at different replacement levels of ordinary Portland cement
(OPC) has been reported (Bagheri et al., 2012; Espion et al.,
2013; Meddah et al., 2014; Nehdi et al., 2004; Thomas
et al., 1999).

Owing to their easy availability and large quantities, calcined
clays have a significant potential in lowering the clinker
content and thereby carbon dioxide emissions (Scrivener,
2014). Clay minerals are a combination of numerous
aluminium and silicon sheets. Depending on the weathering
conditions, different clay minerals are formed based on
the stacking arrangement of the sheets (Lopez, 2009). Clay
minerals have limited pozzolanic activity due to their highly
ordered crystal structure and are usually subjected to thermal
treatment to impart them with pozzolanic activity. On calcina-
tion, they undergo dehydroxylation process – that is, the
process of removal of its structural water, resulting in the for-
mation of a highly reactive amorphous aluminosilicate phase
(Tironi et al., 2012; Vizcayno et al., 2010). Kaolinitic clays
have the highest potential for pozzolanic activity (Fernandez
et al., 2011). The kaolinite content of the clay governs its reac-
tivity, which can be determined by thermogravimetric analysis
(Avet and Scrivener, 2018).

Limestone filler in cement provides the extra nucleation sites
for hydration products, helps in better packing and improving
the workability of concrete. Although limestone does not
possess any pozzolanic property, in a high-pH environment it
has a tendency to react with the aluminate ions present in the
cement or SCMs and form mono-carboaluminate and hemi-
carboaluminate (Antoni, 2013; Deschner et al., 2012; Kakali
et al., 2000; Matschei et al., 2007). The OPC–limestone reac-
tion is not so prominent owing to limited availability of alumi-
nate in the clinker. A more reactive alumina content in an
SCM could favour the formation of carboaluminates in the
presence of limestone. The reaction between calcium aluminate
and calcium carbonate is of greater importance when both the
materials are mixed with each other to form a blend of ternary
cement.

Recently, wide interest has been generated in research into cal-
cined clay limestone blend cement. The pozzolanic reaction of
calcined clay and the reaction of limestone with alumina create
a synergetic effect in the system (Antoni, 2013; Bishnoi et al.,
2014; Emmanuel et al., 2016). The cement, comprising a blend
of calcined clay and limestone, is reported to provide equival-
ent strength to OPC even at a 50% clinker factor (Antoni
et al., 2012; Avet, 2017; Dhandapani et al., 2018; Emmanuel
et al., 2016; Krishnan et al., 2018). In this study, a blend of
limestone calcined clay pozzolan (LCCP), a potential SCM for
use in the ready-mix concrete and construction industries, was
studied. The effect of different replacement levels of cement
with LCCP on the rate of hydration and strength development
were investigated. The effect of replacement of cement with
LCCP on transport properties of concrete was also studied.

Methodology and experiments

Materials
The OPC used in the present study was procured from a
cement plant based in India. Clay with kaolinite content of
around 60% was selected for the study. Kaolinite, quartz and
haematite were the major mineral phases present in the clay.
Studies have reported that only a small fraction of the total
limestone added undergoes chemical reaction to form carboa-
luminates (Antoni, 2013). Therefore, in this study, a less pure
form of limestone that is usually discarded from clinker pro-
duction was procured from a cement company. Along with
calcite, peaks corresponding to quartz, kaolinite and muscovite
were detected in the X-ray diffraction (XRD) analysis of the
limestone sample. The chemical composition of the raw
materials used in the study was measured using X-ray fluor-
escence and is shown in Table 1. The calcination of clay was
carried out in a rotary kiln at a temperature of around 950°C.
No peaks corresponding to kaolinite were observed in X-ray
diffractograms of the calcined clay, implying proper and
complete calcination of clay.

The LCCP was produced at a cement-grinding unit of
J. K. Lakshmi in Jajjhar, India by inter-grinding the raw
materials in a ball mill. The ratio of calcined clay to limestone
was kept as 2 : 1, based on earlier studies (Antoni, 2013;
Bishnoi et al., 2014; Emmanuel et al., 2016). Two per cent of
gypsum was added to support the hydration of aluminates in
the calcined clay based on laboratory trials. The gypsum
added in the LCCP is in addition to the gypsum already
present in OPC. Figure 1 shows the particle size distribution of
OPC and LCCP measured using laser diffractrometry. The
Blaine’s fineness value of OPC and LCCP was measured to be
300 and 600 m2/kg.

Experiments

Cement paste and mortar
The hydration kinetics of cement are altered in the presence of
SCMs. Isothermal calorimetry can be used to investigate the
changes occurring in the hydration kinetics of cement on repla-
cing part of the cement with SCM. In this study, the effect of
replacement of different quantities of cement with LCCP on

Table 1. Chemical composition of raw materials (%)

Weight: % OPC Clay Limestone

Calcium oxide (CaO) 55·94 0·06 31·50
Silicon dioxide (SiO2) 20·99 54·67 27·01
Aluminium oxide (Al2O3) 7·16 27·69 9·92
Iron (III) oxide (Fe2O3) 3·83 4·93 5·27
Magnesium oxide (MgO) 3·06 0·13 0·73
Sodium oxide (Na2O) 0·52 0·12 0·20
Potassium oxide (K2O) 0·90 0·25 0·68
Sulfur trioxide (SO3) 4·39 0·10 0·02
Loss on ignition 2·55 10·28 26·1
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the rate of hydration of the cement was measured using a
Calmertix ICal 8000 isothermal calorimeter. The calorimeter
was maintained at a constant temperature of 27°C while the
energy released on hydration was measured. The test was done
on cement paste samples prepared at a water-to-binder ratio of
0·45 and 0, 10, 15, 20, 30 and 50 replacement levels of cement
with LCCP.

Depending on the physical and chemical properties of the
SCMs, an increase or decrease in the initial setting time of the
cement paste occurs. The initial setting time of the cement
paste at the above-mentioned replacement levels of cement was
measured in accordance with the relevant Indian standard (IS
4031, Part 5 (BIS, 1988)) using Vicat apparatus. Cement paste
samples were cast at 0·85 times the water required to prepare a
paste of standard consistency. The initial setting time was
measured by marking the time at which the needle failed to
pierce the cement paste sample in a Vicat mould beyond
5± 0·5 mm. All the times measured were taken from the
instant when water was added to the cement.

The XRD was used to characterise and study the variation
occurring in the phase assemblage of hydration products of
cement containing LCCP. Cement paste samples were cast
at a water-to-binder ratio of 0·45 in a cylindrical plastic
mould 100 mm high, with a radius of 20 mm. XRD scans
were carried out on disc specimens sliced from the cement
paste samples at various ages of hydration using a Bruker D8
Advanced Eco model without stopping the hydration. The
scans were done in the range from 5 to 70° with a step size of
0·0167° and a time step of 30 s.

Mortar cubes of size 70·6 mm! 70·6 mm! 70·6 mm were cast
to measure the compressive strength of different blends. The
mortar samples were cast at a water-to-binder ratio of 0·45

with a constant sand-to-binder ratio of 3. The samples were
demoulded 24 h after casting and were subsequently placed for
underwater curing at a temperature of 27± 2°C until the age of
testing. The compressive strength was measured after 1, 3, 7
and 28 d. The rate of loading was kept constant at
35 (N/mm2)/min.

Prisms of size 100 mm! 100 mm! 250 mm were also cast at
15, 30 and 45% cement replacement level. The mortar prism
samples were used to measure the carbonation resistance of the
blends. After 28 d of underwater curing, the prism samples
were preconditioned at a temperature of 27°C and 60% relative
humidity for 14 d prior to exposure to carbon dioxide. Epoxy
was applied to the square surface of the prism samples to
induce unidirectional carbonation. The prism samples were
placed in an accelerated carbonation chamber maintained at
3% carbon dioxide concentration, a temperature of 27°C and
40% relative humidity. The microstructural changes occurring
on carbonation in samples exposed to 3% carbon dioxide con-
centration is similar to samples exposed in natural conditions
(Cui et al., 2015; Shah et al., 2018). The rate of carbonation in
concrete is slower in a higher relative humidity; hence, the rela-
tive humidity of 40% was selected for the study (Shah and
Bishnoi, 2018b). The carbonation depth was measured by
spraying 1% phenolphthalein indicator solution on the freshly
broken surface of prism samples at different ages of exposure
(Rilem CPC-18, 1988).

Concrete
The concrete was cast according to the procedure described in
the relevant Indian standards (IS 456 (BIS, 2000); IS 10262
(BIS, 2009)). Concrete was cast at a water-to-binder ratio of
0·40 at 0, 10, 15 and 20% cement replacement levels.
Polycarboxylic ether (PCE)-based water-reducing admixture
was used to improve the workability of the concrete. The
details of the mix design for 1 m3 of concrete for different
mixes is given in Table 2. The admixture requirement of the
concrete was adjusted to get a slump of 100 mm. Crushed
stones were used as the coarse aggregate, having a nominal size
of 10 and 20 mm mixed in a proportion of 0·66 : 1, whereas
river sand was used as the fine aggregate. Owing to the high
fineness and cohesive nature of the calcined clay particles, the
admixture dosage required to obtain a slump similar to the
control blend increased with the increase in replacement level
of cement with LCCP.

Concrete cubes of size 150 mm! 150 mm! 150 mm and
cylinders 100 mm high with a radius of 50 mm were cast. The
compressive strength of the concrete was measured after 1, 3,
7, 28 and 90 d of curing. After 90 d of curing, the cylindrical
samples were cut into discs with a height of 50± 2 mm. The
porosity of the concrete samples was determined by boiling
water test, conducted in accordance with ASTM C642
(ASTM, 2008), on the disc samples. The rate of water absorp-
tion of the concrete was also measured on the disc samples
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Figure 1. Particle size distribution of OPC and LCCP
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according to the guidelines provided in ASTM C1585 (ASTM,
2004). Only the primary absorption rate was measured. The
ionic movement and permeability in the concrete disc samples
were measured using the rapid chloride permeability test
(RCPT) as described in ASTM C1202 (ASTM, 2012). The
RCPT values give an indirect approximation of the chloride
resistance of the system.

Results

Isothermal calorimetry
The energy released during the hydration of the cement was
measured using isothermal calorimetry. Figure 2 shows the iso-
thermal calorimetry curves of OPC and blends containing
different percentages of LCCP. The total energy released
increases with the addition of LCCP. Figure 3 shows the cumu-
lative energy released during the first 24 h of the hydration.
The peak corresponding to aluminate hydration appears early
and distinctly as the amount of LCCP is increased in the
system, whereas at lower replacement levels the aluminate
hydration peak is difficult to differentiate from the main peak
of cement hydration. The peak around 8 h in 50LCCP shows
the aluminate reaction.

Setting time
Table 3 shows the standard consistency and initial setting time
values of different blends. The standard consistency value
increases with the increase in cement replacement level by
LCCP, implying that to obtain the same flow (workability) the
amount of water required in blends containing LCCP is more
as compared to OPC. The initial setting time of the cement
paste marks the point at which the paste starts to lose its
plasticity – that is the beginning of hardening of the cement
paste (Dave et al., 2017). A slight increase in the initial setting
of LCCP blends is observed as compared to OPC at lower
replacement levels, whereas a notable reduction in setting time
is observed for the blends containing higher amounts of LCCP.

Phase assemblage
The phase assemblage of hydrated cement systems was studied
using XRD. Figure 4 shows the XRD pattern of 7 d hydrated
samples of OPC and LCCP blends. Ettringite and portlandite
were the major crystalline phases present in the OPC sample.
In LCCP blends, along with ettringite and portlandite, peaks
corresponding to hemicarboaluminate and monocarboalu-
miante are observed. With the increase in replacement level,
the intensity of the hemicarboaluminate peak increases,

Table 2. Details of concrete mix design for 1 m3

Cement: kg LCCP: kg Coarse aggregate: kg Fine aggregate: kg Admixture: kg Water: kg

OPC 405 0 1193 673 2·4 162
10LCCP 364 41 1188 671 2·8 162
15LCCP 344 61 1186 670 3·2 162
20LCCP 324 81 1183 668 3·6 162

Note: xLCCP, x per cent of cement replaced with LCCP
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whereas the intensity of the portlandite peak reduces. Rietveld
analysis was used to quantify the XRD data using the external
standard method. Rutile was used as the external standard. It
was observed that the quantity of portlandite in the system
reduces with an increase in the LCCP replacement level, as

shown in Figure 5. The reduction in the amount of portlandite
is due to the pozzolanic reaction of calcined clay present in
LCCP. The formation of carboaluminate phases is observed in
1 d hydrated samples of all the LCCP blends. Figure 6 shows
the amount of carboaluminate phases in different blends at
different ages. With hydration, the amount of carboluminate
phases present in the LCCP blends increases; the higher the
replacement level, the higher is the amount of carboaluminate
phase present in the system. The formation of carboaluminates
is observed in OPC systems as well, owing to the presence of a
small quantity of limestone in the cement as mineral additive.

Compressive strength
Figure 7 shows the compressive strength values of the cement
mortar samples measured at different ages. An increase in

Table 3. Consistency and initial setting time of different blends

Material Standard consistency: % Initial setting time: min

OPC 31 140
10LCCP 34 145
15LCCP 36 155
20LCCP 37 145
30LCCP 38 125
50LCCP 43 120

0

50

100

150

200

250

300

0 6 12 18 24

En
er

gy
: J

/g
 o

f c
lin

ke
r

Time: h

OPC
10LCCP
15LCCP
20LCCP
30LCCP
50LCCP
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compressive strength is observed until 30% replacement of
cement with LCCP, whereas at 50% replacement a compressive
strength similar to OPC is observed. The highest 28 d com-
pressive strength is observed for the blend containing 15%
LCCP. Figure 8 shows the compressive strength of the concrete

samples. Compressive strength higher than or similar to OPC
is observed for all the replacement levels of cement.

Transport properties
The transport properties of concrete samples were accessed
using porosity, sorption and rapid chloride ion permeability
tests. Figure 9 shows the results for water accessible porosity of
the concrete samples. The porosity of the concrete reduces
on the addition of LCCP. The capillary suction was measured
by the rate of water absorption in the concrete. The rate of
water absorption of concrete reduces on replacing cement with
LCCP, as shown in Figure 10. The ionic permeability of differ-
ent concrete blends measured using RCPT at 90 d is shown in
Figure 11. It is observed that the use of LCCP reduces the per-
meability of the concrete. The control mix OPC shows the
highest chloride ion permeability among all the blends.

Carbonation depth
The carbonation depth in mortar prism samples was measured
after 30, 60 and 90 d of exposure. Increase in the replacement
level was observed to lead to an increase in carbonation depth.
However, mortar cast with 15% cement replacement level
shows carbonation resistance similar to OPC. Figure 12 shows
the measured carbonation depth values for the mixes at differ-
ent ages of exposure. The representative error bar shows the
average variation in the carbonation depth values.

Discussion
The hydration process of cement consists of several stages: pre-
induction or dissolution, induction, acceleration and decelera-
tion (Bishnoi and Scrivener, 2009). A rapid dissolution of ionic
species into the liquid phase and the formation of hydration
products get underway on contact of the cement with water.
After the short initial period of rapid dissolution, the overall
hydration rate slows down significantly for a period of a few
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hours. The induction period or dormant period reduces on
replacing cement with LCCP. The isothermal calorimetry
curves in Figure 2 show that the region where the energy
released is at a minimum reduces on the addition of LCCP.
Subsequently, the slope of the acceleration stage of the
hydration process is observed to increase on increasing the

replacement level of cement with LCCP. The particles of
LCCP provide extra nucleation sites for the growth of
hydration products of cement, resulting in an enhanced reac-
tion of the clinker phases. The beneficial effect of fillers on
hydration has been reported in the literature (Choudhary et al.,
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2016; Elgalhud et al., 2016; Knop et al., 2014; Thomas et al.,
2009). The peak corresponding to aluminate hydration occurs
earlier and with higher intensity on increasing the amount of
LCCP present in the system. The value of total energy released
per gramme of OPC increases with the addition of LCCP. The
hydration of aluminates from LCCP also possibly contributes
to the heat released during the early hydration.

A slight increase in initial setting time is observed in blends
containing up to 15% LCCP as compared to OPC. However,
for cement paste samples containing 30% and 50% LCCP, a
reduction in the setting time is observed. The setting time
results are in agreement with isothermal calorimetry results
that show a shorter induction period and faster acceleration in
blends containing 30% and 50% LCCP. This contrasts with the
setting time characteristics of cement replaced with the most
widely used SCMs such as limestone, fly ash, slag and so on,
which usually result in an increase in the initial setting time of
the cement (Dave et al., 2017; Siddique, 2008). The lower
setting time of LCCP blends at higher replacement can be
attributed to the additional reaction of calcined clay particles
along with clinker grains. Owing to the high fineness and the
structure of calcined clay, the water demand of LCCP blends is
higher as compared to OPC blends to obtain a similar flow
(consistency). Limestone particles in LCCP help to mitigate
the demand for extra water to a certain extent. However, the
higher water demand did not have any significant influence on
the setting time characteristics of the LCCP blends. The impli-
cations of admixtures in terms of the setting time character-
istics were not investigated in this study.

The pozzolanic reaction of calcined clay results in formation
of additional C–S–H and carboaluminates and consumption
of portlandite produced on hydration of clinker. The higher
the replacement level of cement with LCCP, the lower is the
amount of portlandite present in the system. For 50LCCP
blend, no peaks corresponding to portlandite are observed
after 7 d of hydration, implying consumption of all the
portlandite produced on cement hydration by calcined clay.
The amount of carboaluminates formed increases with
hydration in all the LCCP blends. The compressive strengths
of mortar and concrete of LCCP blends are either similar or
greater when compared to OPC. The pozzolanic reaction of
calcined clay and the formation of carboaluminates helps to
improve the compressive strength of the system. The positive
effect of the interaction of limestone with SCMs on the mech-
anical and durability properties have been reported in the lit-
erature (Antoni et al., 2012; Emmanuel et al., 2016). The
carboalumiate phases formed are more stable as compared to
that of monsosulfoaluminate, which forms in the absence of
carbonate ions during the decomposition of ettringite (Klieger
and Hooton, 1990). Cements containing SCMs are generally
known to have lower early strength due to the dilution effect
and limited pozzolanic reaction of the SCMs during early age.
However, in the present study, even at 50% cement replacement

with LCCP, no significant difference is observed in the com-
pressive strength as compared to OPC at 28 d. At lower repla-
cement levels, the compressive strength of LCCP blends is
higher as compared to OPC, even at 7 d.

The higher the replacement level of cement with LCCP, the
lower is the water-permeable porosity. The hydration products
formed on pozzolanic reaction in blends containing LCCP are
deposited in the pores and help to reduce the capillary porosity
of the system. The rate of water absorption is found to be
lower in all the LCCP blends studied as compared to OPC.
The rate of water absorption in concrete is mainly governed by
the capillary pores present in the concrete and their connec-
tivity. The number of pores corresponding to smaller size
increases in blends containing LCCP due to the pozzolanic
reaction of calcined clay assisting in refinement of the pore
structure. Refinement of the pore structure due to pozzolanic
reaction of SCMs has been reported in the literature
(Lothenbach et al., 2011; Mehta and Manmohan, 1981; Sabir
et al., 2001; Shah and Bishnoi, 2018a). The refined pore struc-
ture increases the tortuosity of the system, thereby restricting
the movement or transport of ions/fluids in the concrete. The
reduction in value of the sorption index of LCCP blends could
be primarily associated with the reduction in total volume of
capillary pores and increased tortuosity. The rapid chloride
permeation test result (Figure 11) shows a reduction in total
charge passed on addition of LCCP to the cement, signifying
improved resistance to chloride ingress in LCCP blends. With
reduced capillary porosity and increased tortuosity, the per-
meability of the system also reduces. Chloride binding can
occur in LCCP blends due to the higher amount of alumina
hydrates. Chlorides are known to react with aluminate hydrates
to form Friedel’s salt. Also, physical binding of chloride ions
on the surface of C–S–H is known to occur (Avet, 2017; Saillio
et al., 2014; Thomas et al., 2012). The above phenomena
can collectively result in lower chloride ingress in LCCP blends
as compared to OPC. The carbonation resistance of cement
containing SCMs is generally lower as compared to OPC due
to lower total alkalinity (Branch et al., 2016; Khunthongkeaw
et al., 2006; Shah and Bishnoi, 2018b). The higher the
replacement level of cement with LCCP, the lower was the
carbonation resistance of the cement. The lower carbonation
resistance of LCCP blends can be attributed to lower calcium
hydroxide content in the hydrated cement due to the pozzola-
nic reaction of calcined clay, which is the primary phase
responsible for maintaining hydroxyl alkalinity in the system.
However, the carbonation depth measured on 15LCCP mortar
blend is only marginally higher than OPC, implying that,
although the alkalinity of the system is reduced due to the
pozzolanic reaction, the diffusion of carbon dioxide is slowed
down due to the lower porosity and increased tortuosity of
the system. Therefore, the formation of carboaluminates
and the pozzolanic reaction of calcined clay have a
significant positive influence on the transport properties of the
system.
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From the study carried out, it can be observed that LCCP can
provide a sustainable and viable solution to the construction
industry. The synergetic effect of the constituent materials of
LCCP blended cement helps in developing concrete with
improved mechanical and durability properties as compared to
OPC. Medium-grade kaolinitic clay and limestone having
purity of even 60% are found to be sufficient to make an effi-
cient LCCP. Along with the advantage of the increased life of
limestone quarries by producing low-clinker-factor cements,
the use of low-grade limestone will help to consume the
reject/waste limestone that is usually dumped with no useful
application. The implications of using such limestone for other
processes of cement and concrete production like grinding,
workability and so on should be investigated thoroughly before
being put into use.

Conclusions
In this study, the feasibility of using a new type of LCCP as
cement replacement was investigated. The effect of different
cement replacement level with LCCP on hydration, setting
time, strength development, transport properties and carbona-
tion was investigated.

The rate of hydration of cement was found to increase on
replacing cement with LCCP. The pozzolanic reaction of cal-
cined clay and the additional sites provided by the fine par-
ticles of LCCP for the growth of hydration products is the
primary reason for the increased rate of hydration. The higher
the replacement level, the more prominent was the aluminate
hydration peak, inferring participation of LCCP in the early
age of hydration. No significant effect on initial setting time of
cement paste was observed on replacing cement with LCCP at
lower replacement levels, whereas a reduction in setting time
was observed at higher replacement levels.

The XRD results show the formation of carboaluminate
phases as early as 1 d after hydration, at all the replacement
levels of cement with LCCP. Higher or similar compressive
strength was obtained in all the LCCP blends at 28 d.
Concrete prepared by replacing up to 20% cement with LCCP
showed higher or similar strength as compared to OPC at all
ages. The pozzolanic reaction of calcined clay resulting in the
formation of C–S–H and carboaluminates helps to improve
the mechanical properties of blends containing LCCP.

The water-permeable porosity and rate of water absorption
were found to reduce on increasing the replacement level of
cement with LCCP. The total charge passed in LCCP blends
measured using the rapid chloride permeation test was found
to be lower as compared to OPC. The carbonation resistance
of the blends containing LCCP was lower as compared to
OPC. The higher the replacement level, the lower was the
carbonation resistance. However, at 15% replacement, the
carbonation resistance of LCCP blend was found to be similar
to OPC.
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